
WATER QUALITY MODELING FOR THE WILLAMETTE VALLEY SYSTEM EIS AND BA

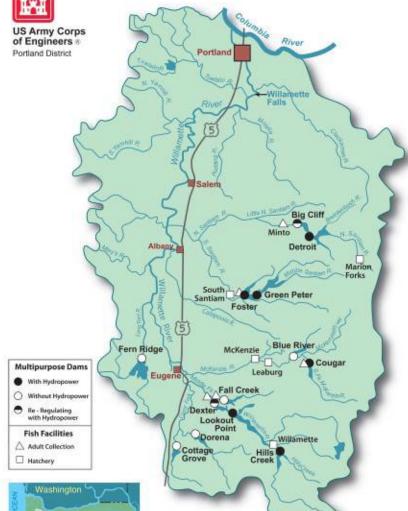
NORM BUCCOLA¹, LAUREL STRATTON GARVIN², STEWART ROUNDS², JOSH ROACH¹, DAN TURNER¹

WILLAMETTE FISHERIES SCIENCE REVIEW

APRIL 5, 2023

¹U.S. Army Corps of Engineers

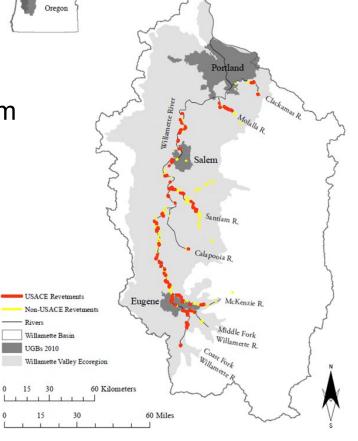
²U.S. Geological Survey Oregon Water Science Center



U.S.F

The Willamette River Basin

WILLAMETTE VALLEY SYSTEM


13 Reservoirs

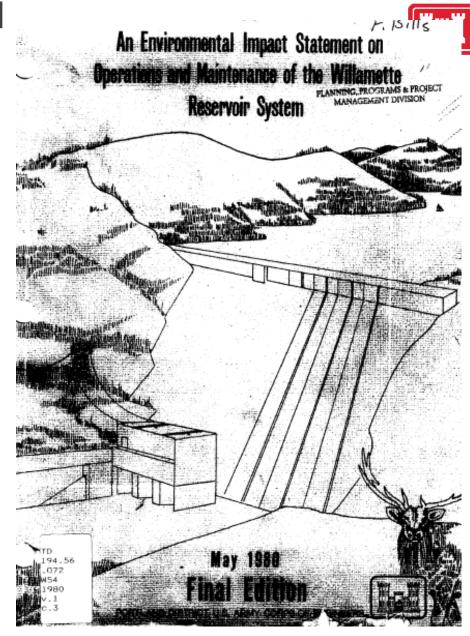
- 11 Multiple-purpose
- 2 Re-regulating
- 8 hydropower

5 Fish Hatcheries

Willamette Bank Protection Program

- 100 miles of revetments
- Mainstem and tributaries

AUTHORIZED PURPOSES



WHY IS THE CORPS PREPARING AN ENVIRONMENTAL IMPACT STATEMENT?

System-wide evaluation of environmental impacts from operation and maintenance was last conducted in 1980.

Since 1980:

- Operations have been modified and structural improvements have been made.
- New information is available on the environmental impacts of operating and maintaining the system
- Large amount of new information gained regarding Endangered Species Act (ESA) listed species since the 2008 biological opinion, primarily obtained from the research, monitoring, and evaluation (RM&E) program that the Corps has implemented.
- In order to continue to operate the system, Corps must comply with ESA

PRIMARY EFFECTS OF WILLAMETTE VALLEY

SYSTEM ON FISH

Fish

- Habitat isolation/disconnection
 - Dams block access to spawning habitat
 - In some basins 90% of spawning habitat upstream of dams
- Interaction of hatchery fish with wild fish
- Flow availability and physical habitat

Hydrology

Lower winter and higher summer flow

Water Quality

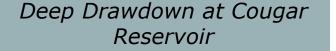
- Temperatures that are too cool in the spring and too warm in the fall, impacting migration timing and survival of ESA-listed fish
- Elevated total dissolved gas, creating injury and mortality of ESA-listed fish

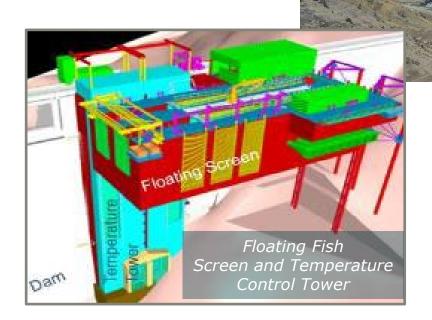
ENDANGERED SPECIES ACT COMPLIANCE

Aquatic Threatened & Endangered Species in the Willamette River Basin

- Bull trout
- Upper Willamette River winter steelhead
- Upper Willamette River spring Chinook salmon

PREFERRED ALTERNATIVE


Integrated Water Management Flexibility and Endangered Species Act Listed Fish Alternative with Operational Downstream Fish Passage


Overall Focus

- Improve fish passage with a combination of modified operations and structural improvements
- Measures to balance water management flexibility and meet ESA-listed fish obligations.

Key Defining Elements

- Floating Screen Structure and Temperature Control Tower at Detroit
- Spring spill and fall drawdown to RO and adult fish facility at Green Peter
- Downstream passage at Foster Dam
- Spring and fall draw down to diversion tunnel at Cougar Dam
- Floating Surface Collector at Lookout Point
- Pacific lamprey passage and infrastructure at AFFs
- Integrated habitat and temperature flow regime

NEAR-TERM OPERATIONS MEASURE

A set of interim-term operations to improve conditions until the long-term action is in place.

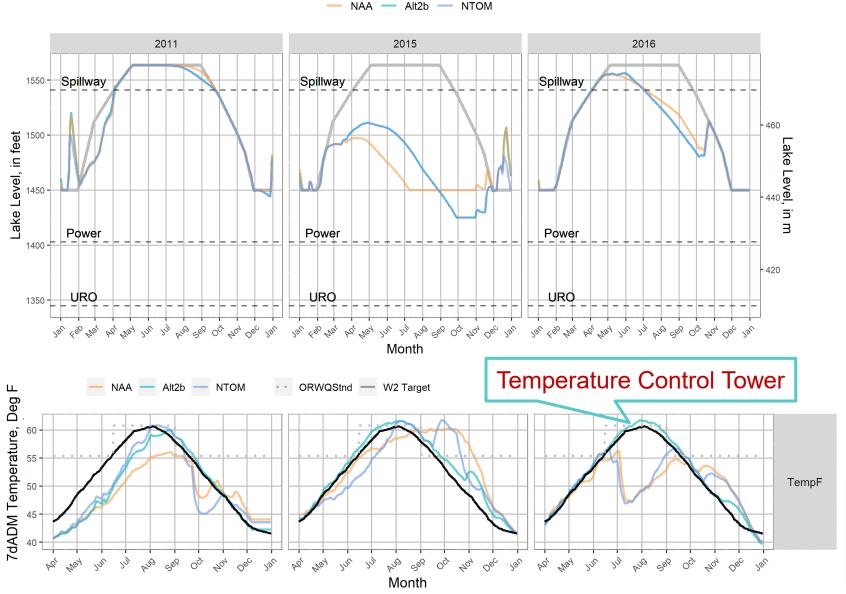
North Santiam (Detroit & Big Cliff)

- Detroit spring/summer spill for downstream fish passage and water temperature management
- Detroit fall lower regulating outlet (RO) for downstream water temperature management
- Detroit winter upper RO for downstream fish passage
- Big Cliff split spill to reduce TDG

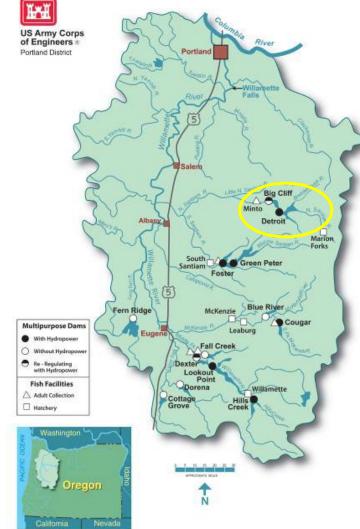
South Santiam (Green Peter & Foster)

- Green Peter spring spill for downstream fish passage
- Green Peter fall deep drawdown for downstream fish passage through ROs
- Foster spring delayed refill and spill for downstream fish passage
- Foster fall spill for downstream fish passage

McKenzie (Cougar)


- Fall drawdown for downstream fish passage through ROs
- Spring delayed refill for downstream fish passage through ROs

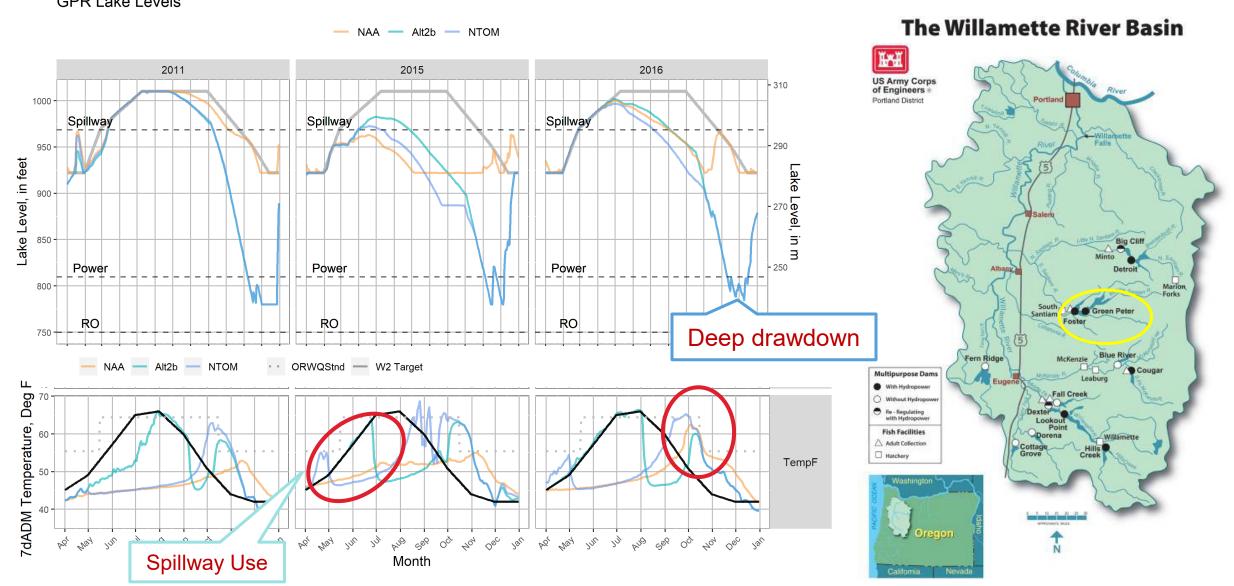
Middle Fork Willamette (Lookout Point, Dexter, & Fall Creek)


- Hills Creek winter night-time RO prioritization for fish passage
- Lookout Point/Dexter spring/summer spill for downstream fish passage and water temperature management
- Lookout Point fall deep drawdown for downstream fish passage through ROs
- Fall Creek extended winter deep drawdown for downstream fish passage
- Fall Creek spring delayed refill for downstream fish passage

TEMPERATURE MODELING

DET Lake Levels

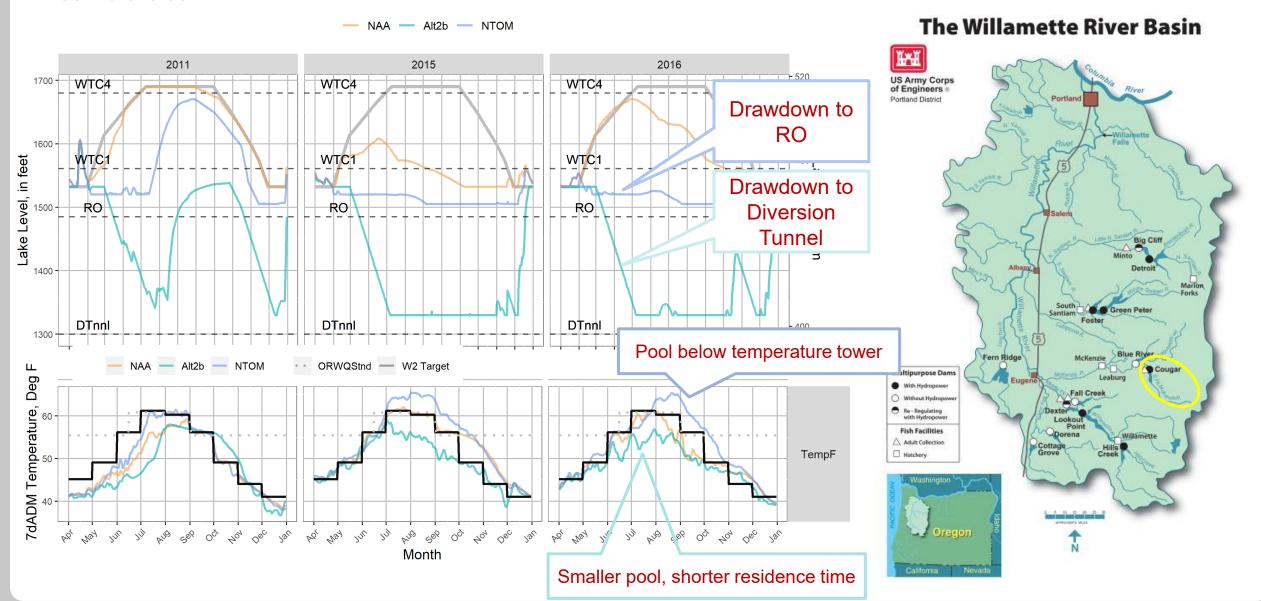
The Willamette River Basin



U.S.ARMY

TEMPERATURE MODELING

GPR Lake Levels



(U.S.ARMY)

TEMPERATURE MODELING

CGR Lake Levels

EFFECTS ANALYSIS - TEMPERATURE

Alternative 2B Highlights

Warmer spring/summer temperatures below Cougar, Detroit/Big Cliff, Green Peter/Foster Cooler fall temperatures below Cougar, Detroit/Big Cliff, Green Peter/Foster

Near Term Operations Highlights

Warmer spring/summer temperatures below Detroit Warmer summer-fall temperatures below Cougar Cooler fall temperatures below Detroit/BigCliff

Seasonal Average Difference From W2 Temperature Target (degrees F)

	NAA				Alt2b					NTOM				
HCR - DEX - CGR - GPR - FOS - BCL -	-7 -6 -3 -5 -3 -4	-2 0 1 -1 1 0	-4 -3 0 -3 0	-4 -3 -1 -3 -1 -2	-7 -6 -4 -4 -2 -4	-3 0 1 1 2	-5 -3 0 1 2	-5 -3 -1 -1 1		-7 -6 -3 -5 -3 -4	-2 0 1 0 2 -1	-4 -1 0 -1 2	-4 -2 0 -2 0 -2	MarMay
Ocation Ocatio	-14 -8 -5 -18 -5 -6	-5 5 0 -12 3 -1	-6 -2 -2 -16 -3 -7	-8 -2 -2 -15 -2 -5	-14 -8 -8 -5 -2 -3	3 -4 -11 -1 1	-10 -3 -6 -4 3	-7 -2 -6 -7 0		-15 -6 -2 -18 -7 -2	-3 4 2 -10 -2 -2	-11 -1 1 -14 -5 -6	-10 -1 0 -14 -5 -4	JunAug
HCR - DEX - CGR - GPR - FOS - BCL -	5 6 0 1 2	11 11 4 4 11 6	8 9 -1 7 6 2	8 9 1 4 6 3	6 7 2 2 3 0	10 11 -2 6 7 2	9 9 -2 2 4 1	8 9 -1 3 5		6 6 0 5 5 -2	12 10 5 8 10 4	7 8 4 8 7 2	8 8 3 7 7 2	SepNov
	2017	2015	2010	STIANO	27	2015	2016	3 TIPUS		201	2015	2016	STIANS	

Downstream Gages:

HCR: Hills Creek

DEX: Dexter

CGR: Cougar FOS: Foster

GPR: Green Peter

BCL: Big Cliff

EFFECTS ANALYSIS – TOTAL DISSOLVED GAS

Annual Difference in Number of Days Above 110% TDG Compared to NAA

			-						
DEX-	-15	0	0	33	42	-15	0	32	[[
LOP-	0	0	0	0	0	0	0	14	(
HCR-	-9	-1	0	-6	0	-9	-1	-2	(E
CGR-	-41	-3	-30	20	-31	-41	-45	77	
FOS-	-12	94	94	95	37	-13	94	41	
GPR-	0	139	139	139	50	123	139	67	
BCL-	-117	-69	-69	164	78	-111	-69	147	
DET-	-77	-77	-77	192	87	-77	-77	160	
	MA	Mila	PILOS	Miss	Miss	Ma	Alifo	YIOM	

DEX: Dexter

LOP: Lookout Point

HCR: Hills Creek

CGR: Cougar

FOS: Foster

GPR: Green Peter

BCL: Big Cliff DET: Detroit

EFFECTS ANALYSIS – TOTAL DISSOLVED GAS

Preferred Alternative (Alt5/Alt2b) TDG Highlights

- Spring and fall spill operations for downstream fish passage and temperature management at Green Peter/Foster will likely increase TDG*
- Proposed structures at Detroit likely to reduce TDG
- Deep drawdown at Cougar to diversion tunnel will likely reduce TDG

Near Term Operations Measure (NTOM) TDG Highlights

- Spring and fall spill operations for downstream fish passage and temperature management at Detroit/BigCliff, Green Peter/Foster, Cougar, Lookout Point/Dexter will likely increase TDG*
- Big Cliff split spill operation included in all Alternatives will likely reduce TDG

^{*} trade off for fish passage, supplementing instream flows below dams, and water temperature management below Detroit

QUESTIONS?

norman.buccola@usace.army.mil 503-808-4837

THANK YOU

Laurel Stratton Garvin, USGS
Stewart Rounds, USGS
Josh Roach, USACE NWP
Dan Turner, USACE NWD
Kathy Warner, USACE NWP
Holly Bellringer, USACE NWP
Kathryn Tackley, USACE NWP

